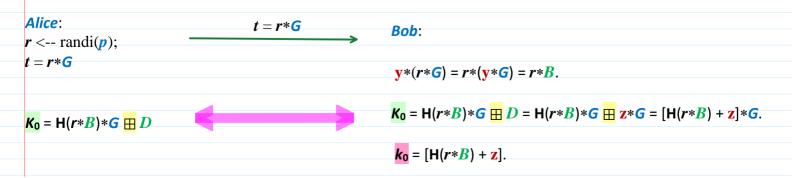
arameters a , b define	s EC equation $y^2 = x^3 + ax + b \mod p$ over F	p.
PrK _A =x;		
$> \mathbf{x} = \operatorname{randi}(\mathbf{p}).$		
$PuK_A = A = \mathbf{x} * \boldsymbol{G}.$		
Alice $A: \mathbf{x} = \frac{1}{2}, A = (x_A)$	$, y_A);$	
	Commitments and their opening	
Public Parameters: PP	Commitments and their opening = (G, H), where H = u*G and u < randi	(2 ²⁵⁶) is random.
Public Parameters: PP		(2 ²⁵⁶) is random.
Public Parameters: PP		(2 ²⁵⁶) is random.
Public Parameters: PP Alice i = 4000	= (<i>G</i> , <i>H</i>), where <i>H</i> = u * <i>G</i> and u < randi	(2 ²⁵⁶) is random.
	= (<i>G</i> , <i>H</i>), where <i>H</i> = u * <i>G</i> and u < randi <i>Alice</i>	7
	= (G , H), where H = $\mathbf{u} * \overline{G}$ and $\mathbf{u} <$ randi Alice $\mathbf{PrK}_{\mathbf{A}} = \mathbf{x} = \operatorname{randi}(p).$	7
	= (<i>G</i> , <i>H</i>), where <i>H</i> = u * <i>G</i> and u < randi <i>Alice</i>	e Bob
	= (G , H), where H = $\mathbf{u} * \overline{G}$ and $\mathbf{u} <$ randi Alice $\mathbf{PrK}_{\mathbf{A}} = \mathbf{x} = \operatorname{randi}(p).$	e Bob Anonymous one-time address creation.
	= (G , H), where H = $\mathbf{u} * \overline{G}$ and $\mathbf{u} <$ randi Alice $\mathbf{PrK}_{\mathbf{A}} = \mathbf{x} = \operatorname{randi}(p)$. $\mathbf{PuK}_{\mathbf{A}} = A = \mathbf{x} * G$.	<i>e Bob</i> Anonymous one-time address creation. Commitment:
	= (G, H), where $H = \mathbf{u} * \mathbf{G}$ and $\mathbf{u} <$ randi Alice $\mathbf{PrK}_A = \mathbf{x} = \text{randi}(p)$. $\mathbf{PuK}_A = A = \mathbf{x} * \mathbf{G}$. $\mathbf{PuK}_{1B} = B$;	$e \qquad Bob$ Anonymous one-time address creation. Commitment: $C(\beta, e) = \beta * G \boxplus e * H.$


Anonymous One-time addressesAlice:Has Bob's public keysBob: $\mathbf{y} < -- \operatorname{randi}(p)$; $\Pr \mathbf{K}_{B1} = \mathbf{y}$; $\Pr \mathbf{W}_1 = B = \mathbf{y} * \mathbf{G} = (\mathbf{x}_B, \mathbf{y}_B)$; $\Pr \mathbf{W}_{1B} = B$; $\mathbf{z} < -- \operatorname{randi}(p)$; $\Pr \mathbf{K}_{B2} = \mathbf{z}$; $\Pr \mathbf{W}_2 = D = \mathbf{z} * \mathbf{G} = (\mathbf{x}_D, \mathbf{y}_D)$; $\Pr \mathbf{W}_{2B} = D$: $\Pr \mathbf{W}_{2B} = D$:

The first *Bob*'s private key **y** is often called the *view key*.

To achieve transaction anonymity by spending an expenses the one-time *address of the payment* is created between the sender *Alice* and receiver *Bob*.

This address is secret (to provide anonymity) and is named also as one-time key and is similar to the secret session key agreed by parties.

Let u, v are integers < p. Property 1: $(u + v)*P = u*P \boxplus v*P$ in literature it is replaced to $--> \frac{(u + v)P = uP + vP}{u(P + Q) = uP + uQ}$ Property 2: $(u)*(P \boxplus Q) = u*P \boxplus u*Q$ in literature it is replaced to --> u(P + Q) = uP + uQ

Acco	prding to the \mathbf{PrK} and \mathbf{PuK} definition in ECC k_0 is a private key for the public key κ_0 .
	the shared secret and is named as address of the payment and it is anonymous for the Net.
	also one-time key created for every transaction and corresponding to the private key k_0 .
	her k_0 nor K_0 are not known the Net yet.
	Commitments and their opening.
	ing H-functions: bitcoin price p and salt s .
2.Pe	dersen commitment: blinding factor $m{eta}$ amount of expenses $m{e}$, hiding, opening.
	mmitment and its opening using H-functions.
	e: predicts the bitcoin price p next month and tells it to Bob .
	asks <i>Alice</i> to say this price.
	e: said that she is no intending to reveal this knowledge for free.
	promised a reward.
Alice	e: randomly generates salt <i>s</i> < randi(2 ²⁵⁶)
	computes $h = H(p s)$
	sends h to Bob .
	After 1 months bitcoin prices grew up by 510 %
	Bob : sold the bitcoins with a great profit and asks to prove its knowledge.
Alice	e: sends salt s and p to Bob .
	Bob : verifies if $h = H(p s)$ and sends Alice reward.
2.0-	
	dersen commitment and its opening using ECC.
All u	sers have two generators in EC: G and H.
A.1:	c_{1}
	e: computes the commitment $C(e)$ to expense value $e = 4000$;
Allce	e: randomly generates secret blinding value $\beta = \langle randi(2^{256}) \rangle$
	$C(\beta, e) = \beta * G \boxplus e * H.$
	e: sends $C(\beta, e)$ to Bob , to Net and to Audit Authority - AA which is Trusted Third Party - TTP .
	e: computes mask and expenses parameters (v, w) respectively and sends to Bob by secret channel to
oper	n the commitment
	$\mathbf{v} = \mathbf{\beta} + \mathbf{H}(\mathbf{r} \ast \mathbf{B});$
	$\boldsymbol{w} = \boldsymbol{e} + \mathbf{H}(\mathbf{H}(\boldsymbol{r} \ast \boldsymbol{B})).$
Pah	beconvoluted $\pi * P$ using $\pi * (\pi * C) = \pi * (\pi * C)$
DUD:	thas previuosly computed $r*B$ using $\mathbf{y}*(r*G) = r*(\mathbf{y}*G) = r*B$;
	he computes $H(r*B)$ and $H(H(r*B))$;
	then he computes:
	$\beta = \mathbf{v} - \mathbf{H}(\mathbf{r} * \mathbf{B});$
	e = w - H(H(r * B)).
Bob:	having public parameters verifies if previuosly received commitment $C(\beta, e) = \beta * G \boxplus e * H$ is valid.
BOD:	Using one-time key ko agreement signs the expense e and sends signature to AA.
-	

B: PukAA, G(B, e), B, e, Ko. $Sign(k_0, G(B, e)) = G_B = (F_B, S_B)$ AA: PrKAA, PUKAA k - randi $E_{nc}(P_{\mathcal{U}}K_{AA}, \mathbf{k}) = c_{\mathbf{k}}$ GB, Dec (PrKAA, GR)= $AES_{\mu}(K_{o}, G(B, e), B, e, K_{o}) = G_{B}$ $= (K_o, G(\beta, e), \beta, e, K_o)$ $K_{0} = k_{0} * G$ $Ver(K_o, G_B, G(B, e)) = \intercal$ By having B, e computes e. Till this place We can then define the commitment of an amount <u>a</u> as C(x, a) = xG + aH, where <u>x</u> is a blinding Terminology summary · A hiding commitment does not allow an adversary to know what value was selected by the commiter. This is usually accomplished by including a random term that the attacker cannot guess. · A blinding term is the random number that makes the commitment impossible to guess. • An opening is the values that will compute to the commitment. · A binding commitment does not allow the committer to compute a hash with different values. That is, they cannot find two (value, salt) pairs that hash to the same value pedersen-commitment: Why the committer must not know the discrete logarithm relationship between B and G Suppose the committer knows b such that B=bG. In that case, they can open the commitment commitment=vG+sB to a different (v',s') other than the value they originally committed. Here's how the committer could cheat if they know that b is the discrete logarithm of B.B=bG The committer can rewrite the commitment equation:commitment=vG+sB=vG+s(bG) (substituting B = bG)=(v+sb)G The committer picks a new value v' and computes s': v'+s'b=v+sbs'=v+sb–v'b Then, the prover presents (v',s') as the forged opening. This works becausecommitment=v'G+v+sb-v'bBcommitment=v'G+(v+sb-v') Gcommitment=v'G+vG+s(bG)–v Gcommitment=vG+sBcommitment=commitmentTherefore, the committer must not know the discrete logarithm relationship between the elliptic curve points they are using. One way to accomplish this is to have a verifier supply the elliptic curve points for the committer. A simpler way, however, is to pick the elliptic curve points in a random and transparent way, such as by pseudorandomly selecting elliptic curve

points. Given a random elliptic curve point, we do not know its discrete logarithm.
For example, we could start with the generator point, hash the x and y values
For example, we could start with the generator point, hash the x and y values, then use that to seed a pseudorandom but deterministic search for the next point.
From < <u>https://www.rareskills.io/post/pedersen-commitment</u> >