
 Anonymous One-time addresses

Alice: Has Bob's public keys Bob: y <-- randi(p); PrKB1 = y; PuK1 = B = yG = (xB, yB);

 PuK1B = B; z <-- randi(p); PrKB2 = z; PuK2 = D = zG = (xD, yD);

 PuK2B = D;

The first Bob's private key y is often called the view key.
To achieve transaction anonymity by spending an expenses the one-time address of the payment is created
between the sender Alice and receiver Bob.
This address is secret (to provide anonymity) and is named also as one-time key and is similar to the
secret session key agreed by parties.

Alice

Remainder e = 4000

PuK1B = B;
PuK2B = D;

Bob

y(rG) = r(yG) = rB.

K0 = H(rB)G ⊞ D = H(rB)G ⊞ zG = [H(rB) + z]G.

k0 = [H(rB) + z].

PP=(EC secp256k1; BasePoint-Generator G; prime p; param. a, b);

Parameters a, b defines EC equation y2=x3+ax+b mod p over Fp.

PrKA=x;
>> x=randi(p).

PuKA=A=xG.

Alice A: x=…..; A=(xA, yA);

t = rG

PrKA=x = randi(p).

PuKA=A=xG.

Alice i = 4000

Alice:
r <-- randi(p);

t = rG

K0 = H(rB)G ⊞ D

Anonymous one-time address creation.
Commitment:

C(β, e) = βG ⊞ e

Opening:

v = β + H(rB);

w = e + H(H(rB)).

 Commitments and their opening

Public Parameters: PP = (G, H), where H = uG and u <--- randi(2256) is random.

Bob:

e

Let u, v are integers < p.

Property 1: (u + v)P = uP ⊞ vP in literature it is replaced to --> (u + v)P = uP + vP

Property 2: (u)(P ⊞ Q) = uP ⊞ uQ in literature it is replaced to --> u(P + Q) = uP + uQ

114_008 Commitment Opening - AA Verification

 114_008 Commitment Opening - TTP Verification Page 1

According to the PrK and PuK definition in ECC k0 is a private key for the public key K0.
K0 is the shared secret and is named as address of the payment and it is anonymous for the Net.
K0 is also one-time key created for every transaction and corresponding to the private key k0 .
Neither k0 nor K0 are not known the Net yet.

 Commitments and their opening.
1.Using H-functions: bitcoin price p and salt s.
2.Pedersen commitment: blinding factor β amount of expenses e, hiding, opening.

1.Commitment and its opening using H-functions.
Alice: predicts the bitcoin price p next month and tells it to Bob.
Bob: asks Alice to say this price.
Alice: said that she is no intending to reveal this knowledge for free.
Bob: promised a reward.
Alice: randomly generates salt s <--- randi(2256)
 computes h = H(p||s)
 sends h to Bob.

 After 1 months bitcoin prices grew up by 510 %
 Bob: sold the bitcoins with a great profit and asks to prove its knowledge.
Alice: sends salt s and p to Bob.
 Bob: verifies if h = H(p||s) and sends Alice reward.

2.Pedersen commitment and its opening using ECC.

All users have two generators in EC: G and .

Alice: computes the commitment C(e) to expense value e = 4000;
Alice: randomly generates secret blinding value β = <--- randi(2256)

 C(β, e) = βG ⊞ e

Alice: sends C(β, e) to Bob, to Net and to Audit Authority - AA which is Trusted Third Party - TTP.
Alice: computes mask and expenses parameters (v, w) respectively and sends to Bob by secret channel to
open the commitment

 v = β + H(rB);

 w = e + H(H(rB)).

Bob: has previuosly computed rB using y(rG) = r(yG) = rB;

 he computes H(rB) and H(H(rB));
 then he computes:

 β = v - H(rB);

 e = w - H(H(rB)).

Bob: having public parameters verifies if previuosly received commitment C(β, e) = βG ⊞ e is valid.

Bob: Using one-time key k0 agreement signs the expense e and sends signature to AA.

 114_008 Commitment Opening - TTP Verification Page 2

Terminology summary

A hiding commitment does not allow an adversary to know what value was
selected by the commiter. This is usually accomplished by including a
random term that the attacker cannot guess.

•

A blinding term is the random number that makes the commitment
impossible to guess.

•

An opening is the values that will compute to the commitment.•

A binding commitment does not allow the committer to compute a hash with
different values. That is, they cannot find two (value, salt) pairs that hash to
the same value.

•

From <https://www.rareskills.io/post/pedersen-commitment>

Why the committer must not know the discrete logarithm relationship
between B and G

Suppose the committer knows b such that B=bG.

In that case, they can open the commitment

commitment=vG+sB

to a different (v′,s′) other than the value they originally committed.

Here’s how the committer could cheat if they know that b is the discrete logarithm
of B.B=bG

The committer can rewrite the commitment
equation:commitment=vG+sB=vG+s(bG) (substituting B = bG)=(v+sb)G

The committer picks a new value v′ and computes s′:

v′+s′b=v+sbs′=v+sb–v′b

Then, the prover presents (v′,s′) as the forged opening.

This works becausecommitment=v′G+v+sb–v′bBcommitment=v′G+(v+sb–v′)
Gcommitment=v′G+vG+s(bG)–v′
Gcommitment=vG+sBcommitment=commitmentTherefore, the committer must
not know the discrete logarithm relationship between the elliptic curve
points they are using.

One way to accomplish this is to have a verifier supply the elliptic curve points for
the committer. A simpler way, however, is to pick the elliptic curve points in a
random and transparent way, such as by pseudorandomly selecting elliptic curve
points. Given a random elliptic curve point, we do not know its discrete logarithm.

Till this place

 114_008 Commitment Opening - TTP Verification Page 3

https://www.rareskills.io/post/pedersen-commitment

points. Given a random elliptic curve point, we do not know its discrete logarithm.

For example, we could start with the generator point, hash the x and y values,
then use that to seed a pseudorandom but deterministic search for the next point.

From <https://www.rareskills.io/post/pedersen-commitment>

 114_008 Commitment Opening - TTP Verification Page 4

https://www.rareskills.io/post/pedersen-commitment

